This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "math_fps.hpp"
#include "formal_power_series.hpp"
vector<mint> stirling_second_k(int k, int nmax) {
const int m = nmax - k;
FPS f(m + 1);
auto fact_inv = enumerate_factinv<Mod>(nmax);
for (int i = 0; i <= m; ++i) {
f[i] = fact_inv[i + 1];
}
f.pow_inplace(k);
vector<mint> s(m + 1);
mint fact_n = 1;
for (int i = 1; i <= k; ++i) fact_n *= i;
for (int n = k; n <= nmax; ++n) {
s[n - k] = f[n - k] * fact_n * fact_inv[k];
fact_n *= (n + 1);
}
return s;
}
vector<mint> partition_number(int n) {
auto inv = enumerate_inv<Mod>(n);
FPS f(n + 1);
for (int i = 1; i <= n; ++i) {
for (int j = 1, lim = n / i; j <= lim; ++j) {
f[i * j] += inv[j];
}
}
f.exp_inplace();
return f.as_vector();
}
#line 1 "formal_power_series.hpp"
#include <atcoder/convolution>
template <int MOD>
struct FormalPowerSeries : public vector<atcoder::static_modint<MOD>> {
using Fp = atcoder::static_modint<MOD>;
using vector<Fp>::vector;
using vector<Fp>::operator=;
using F = FormalPowerSeries;
FormalPowerSeries(const vector<Fp> &vec) { *this = vec; }
void shrink() {
while (!this->empty() && this->back() == 0) this->pop_back();
}
F operator+() const noexcept { return *this; }
F operator-() const noexcept {
F res(*this);
for (auto &&e : res) e = -e;
return res;
}
F operator*(const Fp &k) const noexcept { return F(*this) *= k; }
F operator/(const Fp &k) const { return F(*this) /= k; }
F operator+(const F &g) const noexcept { return F(*this) += g; }
F operator-(const F &g) const noexcept { return F(*this) -= g; }
F operator<<(const int d) const noexcept { return F(*this) <<= d; }
F operator>>(const int d) const noexcept { return F(*this) >>= d; }
F operator*(const F &g) const { return F(*this) *= g; }
F operator/(const F &g) const { return F(*this) /= g; }
F operator%(const F &g) const { return F(*this) %= g; }
F &operator*=(const Fp &k) noexcept {
for (auto &&e : *this) e *= k;
return *this;
}
F &operator/=(const Fp &k) {
assert(k != 0);
*this *= k.inv();
return *this;
}
F &operator+=(const F &g) noexcept {
const int n = this->size(), m = g.size();
this->resize(max(n, m));
for (int i = 0; i < m; ++i) (*this)[i] += g[i];
return *this;
}
F &operator-=(const F &g) noexcept {
const int n = this->size(), m = g.size();
this->resize(max(n, m));
for (int i = 0; i < m; ++i) (*this)[i] -= g[i];
return *this;
}
F &operator<<=(const int d) {
const int n = this->size();
this->insert(this->begin(), d, Fp(0));
return *this;
}
F &operator>>=(const int d) {
const int n = this->size();
if (n <= d)
this->clear();
else
this->erase(this->begin(), this->begin() + d);
return *this;
}
F &operator*=(const F &g) {
const auto f = atcoder::convolution(std::move(*this), g);
return *this = F(f.begin(), f.end());
}
F &operator/=(const F &g) {
if (this->size() < g.size()) {
this->clear();
return *this;
}
const int n = this->size() - g.size() + 1;
return *this = (rev().pre(n) * g.rev().inv(n)).pre(n).rev(n);
}
F &operator%=(const F &g) {
*this -= *this / g * g;
this->shrink();
return *this;
}
bool zero() const noexcept {
bool res = true;
for (const auto &e : *this) {
res &= (e.val() == 0);
}
return res;
}
Fp eval(const Fp &x) const noexcept {
Fp res = this->back();
for (auto itr = ++this->rbegin(), itr_rend = this->rend(); itr != itr_rend; ++itr) {
res *= x;
res += *itr;
}
return res;
}
F pre(int d) const { return F(this->begin(), this->begin() + min((int)this->size(), d)); }
F rev(int d = -1) const {
F res(*this);
if (d != -1) res.resize(d, Fp(0));
reverse(res.begin(), res.end());
return res;
}
F inv(int d = -1) const {
int n = this->size();
assert(n != 0 && this->front() != Fp(0));
if (d == -1) d = n;
assert(d > 0);
F res = {1 / this->front()};
res.reserve(2 * d);
int m = res.size();
while (m < d) {
F f(this->begin(), this->begin() + min(n, 2 * m));
F r(res);
f.resize(2 * m);
r.resize(2 * m);
atcoder::internal::butterfly(f);
atcoder::internal::butterfly(r);
for (int i = 0; i < 2 * m; ++i) f[i] *= r[i];
atcoder::internal::butterfly_inv(f);
f.erase(f.begin(), f.begin() + m);
f.resize(2 * m);
atcoder::internal::butterfly(f);
for (int i = 0; i < 2 * m; ++i) f[i] *= r[i];
atcoder::internal::butterfly_inv(f);
Fp iz = Fp(1) / (2 * m);
iz *= -iz;
for (int i = 0; i < m; ++i) f[i] *= iz;
res.insert(res.end(), f.begin(), f.begin() + m);
m <<= 1;
}
return {res.begin(), res.begin() + d};
}
F &multiply_inplace(const F &g, int d = -1) {
if (d == -1) d = this->size();
assert(d >= 0);
*this = atcoder::convolution(move(*this), g);
this->resize(d);
return *this;
}
F multiply(const F &g, int d = -1) const { return F(*this).multiply_inplace(g, d); }
F &diff_inplace() noexcept {
const int n = this->size();
for (int i = 1; i < n; ++i) (*this)[i - 1] = (*this)[i] * i;
this->back() = 0;
return *this;
}
F diff() const noexcept { return F(*this).diff_inplace(); }
F &integral_inplace() noexcept {
constexpr int p = Fp::mod();
const int n = this->size();
vector<Fp> inv(n);
inv[1] = 1;
for (int i = 2; i < n; ++i) inv[i] = -inv[p % i] * (p / i);
for (int i = n - 1; i > 0; --i) (*this)[i] = (*this)[i - 1] * inv[i];
this->front() = 0;
return *this;
}
F integral() const noexcept { return F(*this).integral_inplace(); }
F &log_inplace(int d = -1) {
const int n = this->size();
assert(this->front() == 1);
if (d == -1) d = n;
assert(d >= 0);
this->resize(d);
const F f_inv = this->inv();
this->diff_inplace().multiply_inplace(f_inv).integral_inplace();
return *this;
}
F log(int d = -1) const { return F(*this).log_inplace(d); }
F &exp_inplace(int d = -1) {
const int n = this->size();
assert(this->front() == 0);
if (d == -1) d = n;
assert(d >= 0);
F g = {1}, g_fft;
this->resize(d);
this->front() = 1;
const F h_diff = this->diff();
for (int m = 1; m < d; m <<= 1) {
F f_fft(this->begin(), this->begin() + m);
f_fft.resize(2 * m);
atcoder::internal::butterfly(f_fft);
if (m > 1) {
F _f(m);
for (int i = 0; i < m; ++i) _f[i] = f_fft[i] * g_fft[i];
atcoder::internal::butterfly_inv(_f);
_f.erase(_f.begin(), _f.begin() + m / 2);
_f.resize(m);
atcoder::internal::butterfly(_f);
for (int i = 0; i < m; ++i) _f[i] *= g_fft[i];
atcoder::internal::butterfly_inv(_f);
_f.resize(m / 2);
_f /= Fp(-m) * m;
g.insert(g.end(), _f.begin(), _f.begin() + m / 2);
}
F t(this->begin(), this->begin() + m);
t.diff_inplace();
{
F r(h_diff.begin(), h_diff.begin() + (m - 1));
r.resize(m);
atcoder::internal::butterfly(r);
for (int i = 0; i < m; ++i) r[i] *= f_fft[i];
atcoder::internal::butterfly_inv(r);
r /= -m;
t += r;
t.insert(t.begin(), t.back());
t.pop_back();
}
if (2 * m < d || m == 1) {
t.resize(2 * m);
atcoder::internal::butterfly(t);
g_fft = g;
g_fft.resize(2 * m);
atcoder::internal::butterfly(g_fft);
for (int i = 0; i < 2 * m; ++i) t[i] *= g_fft[i];
atcoder::internal::butterfly_inv(t);
t.resize(m);
t /= 2 * m;
} else {
F g1(g.begin() + m / 2, g.end());
F s1(t.begin() + m / 2, t.end());
t.resize(m / 2);
g1.resize(m);
atcoder::internal::butterfly(g1);
t.resize(m);
atcoder::internal::butterfly(t);
s1.resize(m);
atcoder::internal::butterfly(s1);
for (int i = 0; i < m; ++i) s1[i] = g_fft[i] * s1[i] + g1[i] * t[i];
for (int i = 0; i < m; ++i) t[i] *= g_fft[i];
atcoder::internal::butterfly_inv(t);
atcoder::internal::butterfly_inv(s1);
for (int i = 0; i < m / 2; ++i) t[i + m / 2] += s1[i];
t /= m;
}
F v(this->begin() + m, this->begin() + min(d, 2 * m));
v.resize(m);
t.insert(t.begin(), m - 1, 0);
t.push_back(0);
t.integral_inplace();
for (int i = 0; i < m; ++i) v[i] -= t[m + i];
v.resize(2 * m);
atcoder::internal::butterfly(v);
for (int i = 0; i < 2 * m; ++i) v[i] *= f_fft[i];
atcoder::internal::butterfly_inv(v);
v.resize(m);
v /= 2 * m;
for (int i = 0; i < min(d - m, m); ++i) (*this)[m + i] = v[i];
}
return *this;
}
F exp(int d = -1) const { return F(*this).exp_inplace(d); }
F &pow_inplace(long long m, long long d = -1) {
const long long n = this->size();
if (d == -1) d = n;
assert(d > 0);
if (m == 0) {
F res(d);
res[0] = 1;
return *this = res;
}
if (zero()) {
return *this = F(d);
}
long long k = 0;
while (k < n && (*this)[k] == 0) ++k;
if (k >= (d + m - 1) / m) return *this = F(d);
const Fp c_inv = (*this)[k].inv();
const Fp c_pow = (*this)[k].pow(m);
this->erase(this->begin(), this->begin() + k);
*this *= c_inv;
this->log_inplace(d);
*this *= m;
this->exp_inplace(d);
*this *= c_pow;
this->insert(this->begin(), m * k, 0);
this->resize(d);
return *this;
}
F pow(long long m, int d = -1) const { return F(*this).pow_inplace(m, d); }
// a.size() = n, c.size() = n + m - 1
// res[j] = sum a[i] * c[i + j] (0 <= j < m)
static vector<Fp> middle_product(vector<Fp> a, vector<Fp> c, bool c_reversed = false, bool b_reversed = false) {
int n = a.size(), m = c.size() + 1 - n;
if (m <= 0) return {};
if (min(n, m) <= 60) return middle_product_naive(a, c, c_reversed, b_reversed);
return middle_product_fft(a, c, c_reversed, b_reversed);
}
template <typename U>
vector<Fp> eval(const vector<U> &x) const {
const int n = this->size();
const int m1 = x.size();
if (m1 == 1) return {eval(x[0])};
int m = 1;
while (m < m1) m <<= 1;
vector t(2 * m, vector<Fp>{1});
for (int i = m; i < m + m1; ++i) {
t[i].resize(2);
t[i][0] = -x[i - m];
t[i][1] = 1;
}
for (int i = m - 1; i >= 1; --i) t[i] = atcoder::convolution(t[i << 1], t[i << 1 | 1]);
F t1 = F(t[1]).rev().inv(n);
vector<Fp> f(*this);
f.resize(n + m1 - 1);
vector<Fp> a = middle_product(t1, f, false, false);
vector b(2 * m, vector<Fp>{});
b[1] = a;
for (int i = 1; i < m; ++i) {
b[i << 1 | 1] = middle_product(t[i << 1], b[i], true, true);
b[i << 1] = middle_product(t[i << 1 | 1], b[i], true, true);
}
vector<Fp> res(m1);
for (int i = m; i < m + m1; ++i) res[i - m] = b[i][0];
return res;
}
friend F operator*(const Fp &k, const F &f) noexcept { return f * k; }
static F prod(vector<F> fs) {
const int n = fs.size();
if (n == 0) return {1};
for (int i = n - 1; i > 0; --i) {
fs[i / 2] = atcoder::convolution(fs[i / 2], fs[i]);
}
return fs[0];
}
// prod (a_i x + b_i)
template <typename U, typename V>
static F prod(const vector<U> &a, const vector<V> &b) {
const size_t n = a.size();
vector<F> fs(n, F{0, 0});
for (size_t i = 0; i < n; ++i) {
fs[i][0] = b[i];
fs[i][1] = a[i];
}
return prod(fs);
}
// pre: O(sqrt(MOD) log^2 MOD)
// O(sqrt(MOD))
static Fp factorial(long long n) {
if (n >= MOD) return 0;
static constexpr int v = 1 << 15; // v * v >= MOD
static vector<Fp> ps(v + 1); // ps[i] = prod_1^{iv} j
static bool init = false;
if (!init) {
init = true;
vector<int> k(v);
iota(k.begin(), k.end(), 1);
const F f = prod(vector<int>(v, 1), k); // (x+1)(x+2)...(x+v)
vector<int> xs(v);
for (int i = 0; i < v; ++i) xs[i] = v * i;
vector<Fp> es = f.eval(xs);
ps[0] = 1;
for (int i = 0; i < v; ++i) ps[i + 1] = ps[i] * es[i];
}
const int m = min<int>(v, (n + 1) / v);
Fp p = ps[m];
for (int i = m * v + 1; i <= n; ++i) p *= i;
return p;
}
// dft.size() == 2 * n, dft[0 : n] = DFT(f)
// dft <- DFT(f + [0] * n)
// time complexity: FFT(n)
static void fft_doubling(vector<Fp> &dft, vector<Fp> f, const Fp r_2n) {
const int n = dft.size() >> 1;
Fp rp = 1;
for (auto &e : f) {
e *= rp;
rp *= r_2n;
}
atcoder::internal::butterfly(f);
copy(f.begin(), f.end(), dft.begin() + n);
}
// dft.size() == 2 * n
// dft <- DFT(IDFT(dft[0 : n]) + [0] * n)
// time complexity: 2 FFT(n)
static void fft_doubling(vector<Fp> &dft, const Fp r, const Fp n_inv) {
const int n = dft.size() >> 1;
vector<Fp> b(n);
copy(dft.begin(), dft.begin() + n, b.begin());
atcoder::internal::butterfly_inv(b);
Fp rp = 1;
for (auto &e : b) {
e *= rp * n_inv;
rp *= r;
}
atcoder::internal::butterfly(b);
copy(b.begin(), b.end(), dft.begin() + n);
}
// [x^k] (p/q) (deg p < deg q)
static Fp coeff(vector<Fp> p, vector<Fp> q, long long k) {
static const atcoder::internal::fft_info<Fp> info;
static const Fp inv2 = Fp::raw((Fp::mod() + 1) / 2);
const int n = atcoder::internal::bit_ceil((unsigned int)(q.size()));
p.resize(2 * n), q.resize(2 * n);
atcoder::internal::butterfly(p);
atcoder::internal::butterfly(q);
const int w = __builtin_ctz((unsigned int)(n));
const Fp n_inv = Fp::raw(n).inv();
const Fp r_z = info.root[w + 1];
const Fp ir_z = info.iroot[w + 1];
vector<Fp> ir_p(n, 1);
for (int i = 0; i < n; ++i) {
Fp ir_z_p = ir_z;
for (int j = w - 1; j >= 0; --j) {
if (i >> j & 1) ir_p[i] *= ir_z_p;
ir_z_p *= ir_z_p;
}
}
Fp inv2_p = 1;
while (k > 0) {
inv2_p *= inv2;
if (k & 1) {
for (int i = 0; i < n; ++i) p[i] = ir_p[i] * (p[i << 1] * q[i << 1 | 1] - p[i << 1 | 1] * q[i << 1]);
} else {
for (int i = 0; i < n; ++i) p[i] = p[i << 1] * q[i << 1 | 1] + p[i << 1 | 1] * q[i << 1];
}
for (int i = 0; i < n; ++i) q[i] = q[i << 1] * q[i << 1 | 1];
fft_doubling(p, r_z, n_inv);
fft_doubling(q, r_z, n_inv);
k >>= 1;
if (k < 2 * n) break;
}
atcoder::internal::butterfly_inv(p);
atcoder::internal::butterfly_inv(q);
F f_q(q);
f_q = f_q.inv(k + 1);
Fp conv = 0;
for (int i = 0; i <= k; ++i) conv += p[i] * f_q[k - i];
return inv2_p * conv;
}
static Fp kth_term(const vector<Fp> &a, const vector<Fp> &c, long long k) {
const int d = a.size();
vector<Fp> q(d + 1);
q[0] = 1;
for (int i = 0; i < d; ++i) q[i + 1] = -c[i];
vector<Fp> p = atcoder::convolution(a, q);
p.resize(d);
return coeff(p, q, k);
}
static vector<Fp> middle_product_naive(vector<Fp> a, vector<Fp> c, bool c_reversed = false, bool b_reversed = false) {
if (c_reversed) reverse(c.begin(), c.end());
int n = a.size(), m = c.size() + 1 - n;
vector<Fp> b(m);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
b[j] += a[i] * c[i + j];
}
}
if (b_reversed) reverse(b.begin(), b.end());
return b;
}
static vector<Fp> middle_product_fft(vector<Fp> a, vector<Fp> c, bool c_reversed = false, bool b_reversed = false) {
int n = a.size(), m = c.size() + 1 - n;
if (!c_reversed) reverse(c.begin(), c.end());
int z = atcoder::internal::bit_ceil((unsigned int)(n + m));
a.resize(z), c.resize(z);
atcoder::internal::butterfly(a), atcoder::internal::butterfly(c);
for (int i = 0; i < z; ++i) a[i] *= c[i];
atcoder::internal::butterfly_inv(a);
a.resize(n + m - 1);
a.erase(a.begin(), a.begin() + n - 1);
if (!b_reversed) reverse(a.begin(), a.end());
const Fp iz = Fp::raw(z).inv();
for (auto &e : a) e *= iz;
return a;
}
};
using FPS = FormalPowerSeries<Mod>;
struct Comp {
bool operator()(const FPS &a, const FPS &b) const { return a.size() > b.size(); }
};
#line 2 "math_fps.hpp"
vector<mint> stirling_second_k(int k, int nmax) {
const int m = nmax - k;
FPS f(m + 1);
auto fact_inv = enumerate_factinv<Mod>(nmax);
for (int i = 0; i <= m; ++i) {
f[i] = fact_inv[i + 1];
}
f.pow_inplace(k);
vector<mint> s(m + 1);
mint fact_n = 1;
for (int i = 1; i <= k; ++i) fact_n *= i;
for (int n = k; n <= nmax; ++n) {
s[n - k] = f[n - k] * fact_n * fact_inv[k];
fact_n *= (n + 1);
}
return s;
}
vector<mint> partition_number(int n) {
auto inv = enumerate_inv<Mod>(n);
FPS f(n + 1);
for (int i = 1; i <= n; ++i) {
for (int j = 1, lim = n / i; j <= lim; ++j) {
f[i * j] += inv[j];
}
}
f.exp_inplace();
return f.as_vector();
}