This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/primality_test
#include "../template.hpp"
#include "../number/miller_rabin.hpp"
int main() {
int q;
cin >> q;
while (q--) {
lint n;
cin >> n;
YesNo(is_prime(n));
}
}
#line 1 "test/lc_primality_test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/primality_test
#line 1 "template.hpp"
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <climits>
#include <cmath>
#include <complex>
#include <cstring>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <memory>
#include <numeric>
#include <optional>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#if __cplusplus >= 202002L
#include <bit>
#include <ranges>
#define TYPE(n) remove_cvref_t<decltype(n)>
#else
#define countl_zero __builtin_clzll
#define TYPE(n) remove_cv_t<remove_reference_t<decltype(n)>>
#endif
using namespace std;
using lint = long long;
using P = pair<lint, lint>;
using Pii = pair<int, int>;
using ull = unsigned long long;
struct FastIO {
FastIO() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
}
} aaaAAAaaaAAA;
#define rep(i, n) for (TYPE(n) i = 0; i < (n); ++i)
#define repe(i, n) for (TYPE(n) i = 0; i <= (n); ++i)
#define rep1(i, n) for (TYPE(n) i = 1; i < (n); ++i)
#define rep1e(i, n) for (TYPE(n) i = 1; i <= (n); ++i)
#define repn(i, a, b) for (TYPE(a) i = (a); i < (b); ++i)
#define repne(i, a, b) for (TYPE(a) i = (a); i <= (b); ++i)
#define rrep(i, n) for (TYPE(n) i = (n); i >= 0; --i)
#define all(vec) begin(vec), end(vec)
#define rall(vec) rbegin(vec), rend(vec)
constexpr long long Mod = /** 1000'000'007LL /*/ 998244353LL /**/;
constexpr long long Inf = 2'000'000'000'000'000'010LL;
constexpr int IntInf = 1000'000'010;
constexpr double Pi = 3.141592653589793238;
constexpr double InvPi = 0.318309886183790671;
const int di[] = {0, -1, 0, 1, 0};
const int dj[] = {1, 0, -1, 0, 0};
pair<int, int> adj(int i, int j, int k) { return {i + di[k], j + dj[k]}; }
bool in(int i, int j, int h, int w) { return 0 <= i && i < h && 0 <= j && j < w; }
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
using mint = static_modint<Mod>;
template <int MOD>
inline istream &operator>>(istream &is, static_modint<MOD> &rhs) {
long long tmp;
is >> tmp;
rhs = tmp;
return is;
}
template <int ID>
inline istream &operator>>(istream &is, dynamic_modint<ID> &rhs) {
long long tmp;
is >> tmp;
rhs = tmp;
return is;
}
template <int MOD>
inline ostream &operator<<(ostream &os, const static_modint<MOD> &rhs) {
return os << rhs.val();
}
template <int ID>
inline ostream &operator<<(ostream &os, const dynamic_modint<ID> &rhs) {
return os << rhs.val();
}
// [0, n]
template <typename T>
auto enumerate_fact(int n) {
vector<T> fact(n + 1);
fact[0] = 1;
for (int i = 1; i <= n; ++i) fact[i] = i * fact[i - 1];
return fact;
}
// [0, n]
template <int MOD>
auto enumerate_inv(int n) {
vector<static_modint<MOD>> inv(n + 1);
inv[1] = 1;
for (int i = 2; i <= n; ++i) inv[i] = MOD - MOD / i * inv[MOD % i];
return inv;
}
// [0, n]
template <typename T>
auto enumerate_factinv(int n, vector<T> inv) {
vector<T> fact_inv(n + 1);
fact_inv[0] = 1;
for (int i = 1; i <= n; ++i) fact_inv[i] = fact_inv[i - 1] * inv[i];
return fact_inv;
}
// [0, n]
template <int MOD>
auto enumerate_factinv(int n) {
return enumerate_factinv(n, enumerate_inv<MOD>(n));
}
template <int MOD>
struct Binomial {
using Fp = static_modint<MOD>;
vector<Fp> fact, inv, fact_inv;
explicit Binomial() = default;
// [0, n]
void build(int n) {
fact = enumerate_fact<Fp>(n);
inv = enumerate_inv<MOD>(n);
fact_inv = enumerate_factinv<Fp>(n, inv);
}
Fp comb(int n, int r) const {
if (n < 0 || r < 0 || n < r) return 0;
if (r == 0 || r == n) return 1;
return fact[n] * fact_inv[n - r] * fact_inv[r];
}
Fp perm(int n, int r) const {
if (n < 0 || r < 0 || n < r) return 0;
return fact[n] * fact_inv[n - r];
}
Fp multi(int n, int r) const {
if (n == 0 && r == 0) return 1;
if (n < 0 || r < 0) return 0;
return r == 0 ? 1 : comb(n + r - 1, r);
}
};
Binomial<Mod> binomial;
inline mint fact(int n) { return binomial.fact[n]; }
inline mint comb(int n, int r) { return binomial.comb(n, r); }
inline mint perm(int n, int r) { return binomial.perm(n, r); }
inline mint multi(int n, int r) { return binomial.multi(n, r); }
mint lagrange_interpolation(const vector<mint> &y, mint t) {
const int n = (int)y.size();
mint res = 0;
auto inv = enumerate_inv<Mod>(n - 1), fact_inv = enumerate_factinv(n - 1, inv);
vector<mint> prod2(n);
prod2.back() = 1;
for (int i = n - 1; i > 0; --i) {
prod2[i - 1] = (t - i) * prod2[i];
}
mint prod1 = 1;
for (int i = 0; i < n; ++i) {
mint a = y[i];
a *= fact_inv[i] * fact_inv[n - 1 - i];
if ((n - 1 - i) & 1) a = -a;
res += a * prod1 * prod2[i];
prod1 *= (t - i);
}
return res;
}
template <typename T>
lint inversion_number(const vector<T> vec) {
vector<T> v = vec;
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
const int n = vec.size();
lint res = 0;
fenwick_tree<int> b(n);
for (int i = 0; i < n; ++i) {
const int j = lower_bound(v.begin(), v.end(), vec[i]) - v.begin();
res += b.sum(j + 1, n);
b.add(j, 1);
}
return res;
}
#endif
// top = max
template <typename T>
using prique = priority_queue<T>;
// top = min
template <typename T>
using prique_inv = priority_queue<T, vector<T>, greater<T>>;
template <typename T, typename U>
inline istream &operator>>(istream &is, pair<T, U> &rhs) {
return is >> rhs.first >> rhs.second;
}
template <typename T>
inline istream &operator>>(istream &is, complex<T> &c) {
T real, imag;
is >> real >> imag;
c.real(real);
c.imag(imag);
return is;
}
template <typename T, typename U>
inline ostream &operator<<(ostream &os, const pair<T, U> &rhs) {
return os << "{" << rhs.first << ", " << rhs.second << "}";
}
#if __cplusplus >= 202002L
template <class T>
concept Container = requires(const T &v) {
v.begin();
v.end();
} && !is_same_v<T, string>;
template <Container T>
inline istream &operator>>(istream &is, T &v) {
for (auto &e : v) is >> e;
return is;
}
template <Container T>
inline ostream &operator<<(ostream &os, const T &v) {
for (auto itr = v.begin(), end_itr = v.end(); itr != end_itr;) {
os << *itr;
if (++itr != end_itr) os << " ";
}
return os;
}
#else
template <typename T>
inline istream &operator>>(istream &is, vector<T> &v) {
for (auto &e : v) is >> e;
return is;
}
template <typename T>
inline ostream &operator<<(ostream &os, const vector<T> &v) {
for (auto itr = v.begin(), end_itr = v.end(); itr != end_itr;) {
os << *itr;
if (++itr != end_itr) os << " ";
}
return os;
}
#endif
template <typename T, typename U>
inline bool chmin(T &a, const U b) {
return a > b ? a = b, true : false;
}
template <typename T, typename U>
inline bool chmax(T &a, const U b) {
return a < b ? a = b, true : false;
}
template <typename T, typename U, class Pr>
inline int getid(const vector<T> &v, const U &value, Pr pred) {
return lower_bound(v.begin(), v.end(), value, pred) - v.begin();
}
template <typename T, typename U>
inline int getid(const vector<T> &v, const U &value) {
return getid(v, value, less<>{});
}
template <typename T>
T gcd(const vector<T> &vec) {
T res = vec.front();
for (T e : vec) {
res = gcd(res, e);
if (res == 1) return 1;
}
return res;
}
template <typename T>
T gcd(initializer_list<T> init) {
auto first = init.begin(), last = init.end();
T res = *(first++);
for (auto itr = first; itr != last; ++itr) {
res = gcd(res, *itr);
if (res == 1) return 1;
}
return res;
}
template <typename T>
T lcm(const vector<T> &vec) {
T res = vec.front();
for (T e : vec) res = lcm(res, e);
return res;
}
template <typename T>
T lcm(initializer_list<T> init) {
auto first = init.begin(), last = init.end();
T res = *(first++);
for (auto itr = first; itr != last; ++itr) {
res = lcm(res, *itr);
}
return res;
}
inline void YesNo(bool b) { cout << (b ? "Yes\n" : "No\n"); }
inline void YESNO(bool b) { cout << (b ? "YES\n" : "NO\n"); }
inline void takaao(bool b) { cout << (b ? "Takahashi\n" : "Aoki\n"); }
inline void aotaka(bool b) { cout << (b ? "Aoki\n" : "Takahashi\n"); }
// [l, r]
template <typename T>
T rand(T l, T r) {
static mt19937 mt(random_device{}());
if constexpr (is_integral_v<T>) {
uniform_int_distribution<T> dist(l, r);
return dist(mt);
} else if constexpr (is_floating_point_v<T>) {
uniform_real_distribution<T> dist(l, r);
return dist(mt);
}
}
bool is_prime_naive(lint x) {
for (lint i = 2; i * i <= x; ++i) {
if (x % i == 0) return false;
}
return 1 < x;
}
vector<lint> divisors(lint n) {
vector<lint> f, l;
for (lint x = 1; x * x <= n; ++x) {
if (n % x == 0) {
f.push_back(x);
if (x * x != n) l.push_back(n / x);
}
}
f.reserve(f.size() + l.size());
copy(l.rbegin(), l.rend(), back_inserter(f));
return f;
}
lint phi(lint n) {
lint r = n;
for (lint i = 2; i * i <= n; ++i) {
if (n % i == 0) {
r -= r / i;
while (n % i == 0) n /= i;
}
}
if (n > 1) r -= r / n;
return r;
}
lint floor_sqrt(lint n) {
if (n == 0 || n == 1) return n;
lint x0 = 1LL << ((65 - countl_zero(static_cast<uint64_t>(n))) >> 1);
lint x1 = (x0 + n / x0) >> 1;
while (x1 < x0) {
x0 = x1;
x1 = (x0 + n / x0) >> 1;
}
return x0;
}
lint ceil_sqrt(lint n) {
const lint f = floor_sqrt(n);
if (f * f == n) return f;
return f + 1;
}
template <typename T>
constexpr bool is_intersect(T l1, T r1, T l2, T r2) {
return l1 <= r2 && l2 <= r1;
}
template <typename T>
constexpr bool is_intersect2(T l1, T r1, T l2, T r2) {
return l1 < r2 && l2 < r1;
}
lint modinv(lint a, lint m = Mod) {
lint b = m, u = 1, v = 0;
while (b != 0) {
lint t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
u %= m;
if (u < 0) u += m;
return u;
}
template <typename T>
T modpow(T x, T n, T m = Mod) {
if (m == 1) return 0;
T res = 1;
x %= m;
if (x < 0) x += m;
while (n > 0) {
if (n & 1) res = res * x % m;
x = x * x % m;
n >>= 1;
}
return res;
}
template <typename T>
T intpow(T x, T n) {
T res = 1;
while (n > 0) {
if (n & 1) res *= x;
x *= x;
n >>= 1;
}
return res;
}
template <typename T>
vector<T> compressed(vector<T> v) {
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
return v;
}
class Sieve {
private:
const int max_n;
vector<int> sieve;
public:
explicit Sieve(int max_n) : max_n(max_n), sieve(max_n + 1) {
iota(sieve.begin(), sieve.end(), 0);
for (int i = 2; i * i <= max_n; ++i) {
if (sieve[i] < i) continue;
for (int j = i * i; j <= max_n; j += i) {
if (sieve[j] == j) sieve[j] = i;
}
}
}
unordered_map<int, int> calc(int x) const {
assert(x <= max_n);
unordered_map<int, int> res;
while (x > 1) {
++res[sieve[x]];
x /= sieve[x];
}
return res;
}
vector<int> enumerate_prime(int x) const {
assert(x <= max_n);
vector<int> primes;
for (int i = 2; i <= x; ++i) {
if (sieve[i] == i) {
primes.push_back(i);
}
}
return primes;
}
};
struct UnionFind {
int n;
vector<int> par, rank, siz, es; // [root(i)]
int c;
UnionFind() = default;
explicit UnionFind(int _n) : n(_n), par(_n), rank(_n), siz(_n, 1), es(_n), c(_n) { iota(par.begin(), par.end(), 0); }
int root(int x) {
while (par[x] != x) x = par[x] = par[par[x]];
return x;
}
bool same(int x, int y) { return root(x) == root(y); }
void unite(int x, int y) {
if (x == y) return;
x = root(x);
y = root(y);
if (x == y)
++es[x];
else {
c--;
if (rank[x] < rank[y]) {
par[x] = y;
siz[y] += siz[x];
es[y] += es[x] + 1;
} else {
par[y] = x;
if (rank[x] == rank[y]) ++rank[x];
siz[x] += siz[y];
es[x] += es[y] + 1;
}
}
}
int size(int x) { return siz[root(x)]; }
vector<int> roots() {
vector<int> res;
res.reserve(c);
for (int i = 0; i < n; ++i) {
if (par[i] == i) {
res.push_back(i);
}
}
return res;
}
vector<vector<int>> groups() {
vector<vector<int>> res(n);
for (int i = 0; i < n; ++i)
if (par[i] == i) res[i].reserve(siz[i]);
for (int i = 0; i < n; ++i) res[root(i)].push_back(i);
res.erase(remove_if(res.begin(), res.end(), [](const vector<int> &v) { return v.empty(); }), res.end());
return res;
}
};
template <typename T>
class BinaryIndexedTree {
private:
int n;
vector<T> dat;
public:
BinaryIndexedTree() = default;
explicit BinaryIndexedTree(const int size) : n(size), dat(size + 1) {}
explicit BinaryIndexedTree(const vector<T> &vec) : n(vec.size()), dat(n + 1) {
for (int i = 0; i < n; ++i) dat[i + 1] = vec[i];
for (int i = 1; i <= n; ++i) {
const int j = i + (i & -i);
if (j <= n) dat[j] += dat[i];
}
}
// 0-indexed
void add(const int a, const T v) {
for (int x = a + 1; x <= n; x += (x & -x)) dat[x] += v;
}
// 0-indexed
void set(const int a, const T v) { add(a, v - get(a)); }
void reset() { fill(dat.begin(), dat.end(), T(0)); }
// [0, a)
T sum(const int a) const {
T res = 0;
for (int x = a; x > 0; x -= (x & -x)) res += dat[x];
return res;
}
// [a, b)
T sum(const int a, const int b) const { return sum(b) - sum(a); }
T get(const int i) const { return sum(i, i + 1); }
// min i s.t. sum(i) >= w
int lower_bound(T w) const {
int x = 0, r = 1;
while (r < n) r <<= 1;
for (int i = r; i > 0; i >>= 1) {
if (x + i <= n && dat[x + i] < w) {
w -= dat[x + i];
x += i;
}
}
return x + 1;
}
// min i s.t. sum(i) > w
int upper_bound(T w) const {
int x = 0, r = 1;
while (r < n) r <<= 1;
for (int i = r; i > 0; i >>= 1) {
if (x + i <= n && dat[x + i] <= w) {
w -= dat[x + i];
x += i;
}
}
return x + 1;
}
};
constexpr int msb(long long x) { return 63 - countl_zero(static_cast<uint64_t>(x)); }
#line 4 "test/lc_primality_test.cpp"
#line 1 "number/miller_rabin.hpp"
bool miller_rabin(long long n, const vector<long long> &ts) {
const long long s2 = (n - 1) & (1 - n), d = (n - 1) / s2;
const auto pow_mod_n = [=](long long b, long long p) {
long long res = 1;
while (p > 0) {
if (p & 1) res = __int128_t(res) * b % n;
b = __int128_t(b) * b % n;
p >>= 1;
}
return res;
};
for (const long long a : ts) {
if (a >= n) break;
auto ad = pow_mod_n(a, d);
if (ad == 1) continue;
long long t = 1;
for (; t < s2; t <<= 1) {
if (ad == n - 1) break;
ad = __int128_t(ad) * ad % n;
}
if (t == s2) return false;
}
return true;
}
bool is_prime(long long n) {
if (n == 1) return false;
if (n == 2) return true;
if ((n & 1) == 0) return false;
if (n < 4759123141) return miller_rabin(n, {2, 7, 61});
return miller_rabin(n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
}
#line 6 "test/lc_primality_test.cpp"
int main() {
int q;
cin >> q;
while (q--) {
lint n;
cin >> n;
YesNo(is_prime(n));
}
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++ | all_prime_00 |
![]() |
378 ms | 4 MB |
g++ | carmichael_00 |
![]() |
5 ms | 4 MB |
g++ | example_00 |
![]() |
4 ms | 4 MB |
g++ | hack_issue996_00 |
![]() |
4 ms | 4 MB |
g++ | less_1000000000_00 |
![]() |
29 ms | 4 MB |
g++ | prod_two_prime_00 |
![]() |
68 ms | 4 MB |
g++ | random_00 |
![]() |
50 ms | 4 MB |
g++ | random_01 |
![]() |
51 ms | 4 MB |
g++ | random_02 |
![]() |
50 ms | 4 MB |
g++ | small_00 |
![]() |
21 ms | 4 MB |